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Abstract 
 
The spatial distribution of a natural resource is an important consideration in designing an efficient 
survey or monitoring program for the resource.  We review a unified strategy for designing 
probability samples of discrete, finite resource populations, such as lakes within some geographical 
region; linear populations, such as a stream network in a drainage basin; and continuous, two-
dimensional populations, such as forests.  The strategy can be viewed as a generalization of spatial 
stratification.  In this paper, we develop a local neighborhood variance estimator based on that 
perspective, and examine its behavior via simulation.  The simulations indicate that the local 
neighborhood estimate is unbiased and stable.  The Horvitz-Thompson IRS variance estimate may be 
two times the magnitude of the local neighborhood estimate.  An example using data from a 
generalized random-tessellation stratified design on the Oahe Reservoir resulted in local variance 
estimates being 22 to 58 percent smaller than Horvitz-Thompson IRS variance estimates.  Variables 
with stronger spatial patterns had greater reductions in variance, as expected. 
 
1. Introduction 
Environmental studies invariably involve populations distributed over space.  Traditionally, such 
studies tended to focus on relatively small and well-delimited systems.  However, some of the 
environmental issues that we face today, such as global warming, long-range transport of 
atmospheric pollutants, or habitat alteration, are not localized.  Understanding and quantifying the 
extent of symptoms of wide-spread concerns requires large-scale study efforts, which in turn needs 
environmental sampling techniques and methodology that are formulated to address regional, 
continental, and global environmental issues.  Stehman and Overton (1994) give an overview of 
some statistical issues associated with environmental sampling and monitoring, and Gilbert (1987) 
has an extensive discussion of sampling methods for monitoring environmental pollution.  
 
One of the more prominent features of many environmental populations is the arrangement of the 
population units throughout space.  Nearby units interact with one another, and tend to be influenced 
by the same set of natural and anthropogenic factors.  For example, neighboring trees in a forest 
interact by competing for energy and nutrients, and are influenced by the same set of physical and 
meteorological conditions, the same level of air- or water-borne pollutants, and the same set of 
landscape disturbances.  Sampling designs that capitalize on this spatial aspect of environmental 
populations tend to be more efficient than simple random sampling. 
 
There are several basic paradigms for incorporating the spatial aspect of an environmental 
population into a sample.  Area sampling partitions the domain of the population into polygons, 
which can be treated either as strata, or as population units themselves.  Systematic sampling 
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(Cochran, 1946; Cochran, 1977; Madow, 1949) using a regular grid is often applied, as are several 
variants that perturb the strict alignment (Olea, 1984).  Along the same lines, Munholland and 
Borkowski (1996) have used a Latin square with a single additional independent sample to achieve a 
spatially balanced sample.  Breidt (1995) used a Markov process to generate a one-unit-per-stratum 
spatially distributed sample. A third approach is to use space to order a list frame of the population,  
then use the order of the list to structure the sample, say by defining strata as successive segments of 
the ordered list, or by systematic random sampling.  For example, Saalfeld (1991) drew on graph 
theory to define a tree that leads to a spatially articulated list frame, and the National Agricultural 
Statistics Service has used serpentine strips (Cotter and Nealon, 1987) to order their primary sample 
units within a state.  A related idea that originated in geography is the General Balanced Ternary 
(GBT) spatial addressing scheme (Gibson and Lucas, 1982).  The concept behind a GBT address is 
similar to the concept of space-filling curves, such as first constructed by Peano(1890), or the Hilbert 
curve (Simmons, 1963).   Wolter and Harter (1990) have used a construction similar to Peano’s to 
construct a “Peano key” to maintain the spatial dispersion of a sample as the underlying population 
experiences births or deaths.  Saalfeld (1992) has also used the Peano key to maintain spatial 
dispersion of a sample. 
 
We have synthesized several of these concepts to create a very powerful and flexible technique for 
selecting a spatially-well-distributed probability sample.  The technique is based on creating a 
function that maps 2-dimensional space into 1-dimensional space, thereby defining an ordered 
spatial address.  We require that the function be quadrant-recursive (Mark, 1990), that is, that the 
image of any subquadrant be an interval.  The quadrant-recursive property ensures that some 2-
dimensional proximity relationships are preserved under the function. A restricted randomization, 
called hierarchical randomization (HR), is used to randomly order the spatial addresses.  Systematic 
sampling along the randomly ordered address sequence is analogous to sampling a random 
tessellation of 2-dimensional space, and results in a spatially well-balanced random sample.  We call 
the resulting design a Generalized Random Tessellation Stratified (GRTS) design.  Details of the 
design are discussed in Stevens (1997), Stevens and Olsen (2000), and Stevens and Olsen (in review, 
2002).  In this note, we provide an abbreviated description of the design, note some of it properties, 
and develop a variance estimator this is easily computable, approximately unbiased, and stable. 
 
2. Generalized Random Tessellation Stratified Design  
The GRTS design is developed as if we were selecting points in a continuous, two-dimensional 
target population.  However, it works equally well for obtaining a spatially-well-distributed sample 
of a finite population consisting of discrete units with known spatial locations or a linear, continuous 
population embedded in 2-space, e.g., a stream network.  In these two cases, let the domain be a 2-
dimensional region containing the population.  The hierarchically-randomized, quadrant-recursive 
function in the design application assigns a random address to every one of the (uncountably infinite) 
points in the domain.  Thus, every unit in the finite population will be assigned a random address, 
which can be used to induce a random order of the population.  Similarly, every point in a linear 
network will be mapped onto a random point, in effect stringing the point of the network out onto a 
line in random order.  In all three cases, systematic sampling along the random order will result in 
the corresponding sample units or points being well-distributed over the population domain. 
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Stevens (1997) derived inclusion and joint inclusion functions for several grid-based designs that 
were precursors to GRTS designs, and share some of their properties.  The designs are all 
generalizations of the Random Tessellation Stratified (RTS) design (Overton and Stehman (1993), 
Olea (1984), Dalenius et al. (1961)). The RTS design selects random points in space via a 2-step 
process.  First, a regular tessellation coherent with a regular grid is randomly located over the 
domain to be sampled, and second, a random point is selected within each random tessellation cell. 
The RTS design is a variation on a systematic design that avoids the alignment problems that can 
occur with a completely regular systematic design.  Like a systematic design, an RTS design does 
not allow variable probability spatial sampling.  Stevens (1997) introduced the Multiple-Density, 
Nested, Random-Tessellation Stratified (MD-NRTS) design to provide for variable spatial sampling 
intensity. The geometric concept underlying the MD-NRTS was the notion of coherent 
intensification of a grid: adding points to a regular grid in such a way as to result in a denser regular 
grid with similarly-shaped but smaller tessellation cells. 
 
We can view a quadrant-recursive function as being defined by the limit of successive 
intensifications of a grid covering the unit square, where a grid cell is divided into 4 sub-cells, each 
of which is subsequently divided into 4 sub-sub-cells, and so on.  If we were to carry this recursion 
to the limit, and pair grid points with addresses based on the order in which the divisions were 
carried out, with each digit of the address representing a step in the subdivision, then we obtain a 
quadrant-recursive function.  For example, suppose we begin with a point at (1, 1), and replace it 
with 4 points p0 = (1/2, 1/2), p1 = (1/2,1), p2 =  (1, 1/2), and p3 =  (1, 1).  The next step of the 
recursion replaces each of the four points p0, ..., p3 with {pi - { (1, 1), (0,1), (1,0), (0,0) }/22}.  Thus 
the point p1 = (1/2, 1) is replaced with the 4 points p10 = (1/4, 3/4), p11 = (1/4, 1), p12 = (1/2, 3/4), 
and p13 = (1/2, 1).  Figure 1(a) shows the first 4 points (larger dots), and the successor points to p1 
(smaller dots). In general, the nth step replaces each of the 4n points 

1 2 ... ni i ip  with 

{
1 2

1
... {(1,1), (0,1), (1,0), (0,0)}/ 2

n

n
i i ip +− }.   

 
A spatially-referenced address can be constructed following the pattern of the partitioning, with each 
new partition adding a digit position to the address.  Thus, in the above example, the first group of 
four points are assigned the addresses "0", "1", "2", and "3", with "3" being the original point at 
(1, 1).  The successor points to "2" get the addresses "20", "21", "22", and "23", and so forth.  If 
subquadrants are associated with the point in their upper-right corner, then the addresses induce a 
linear ordering of the sub-quadrants.  Moreover, if we carry the process to the limit, and treat the 
resulting address as digits in a base-4 fraction, e.g., “20131...” as the base 4 number (0.20131...)4, 
then the correspondence between grid point and address is a quadrant-recursive function.   
 
Figure 1(b) shows the first 4 levels of the quadrant-recursive partitioning of the unit square with the 
associated addresses.  Thus, for example, the address of the cross-hatched subquadrant is, as a base 4 
fraction, (0.320)4. If we were to carry the recursive-partitioning to the limit, every point in the 
subquadrant would be assigned an address beginning with (0.320)4, and so would be in the interval 
(0.320, 0.321)4 = (56/64, 57/64)10 
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The line connecting subquadrants in Figure 1(b) follows the same pattern within every subquadrant, 
that is, the subquadrants are linked together in the order lower left, upper left, lower right, upper 
right.  A permutation of that order would still yield a quadrant-recursive function; however, the 
resulting addressing sequence would be different.  In fact, a different permutation could be chosen 
for every partition of every subquadrant and the resulting mapping would still be quadrant recursive. 
If the permutations are chosen at random and independently from the set of all possible 
permutations, we call the resulting random address sequence a hierarchical randomization of the 
original sequence obtained using the order lower left, upper left, lower right, upper right within 
every subquadrant.  If the process is carried to the limit, the result is a 1-1, onto, quadrant-recursive, 
hierarchically-randomized function f that maps the unit square to the unit interval.   
 
The next step in the sample selection is to induce a measure on the unit interval corresponding to the 
inclusion probability function on the population domain.  Since f is 1-1 and onto, f -1 is well-defined 
(in fact, both f and f -1 are measurable functions). We define the induced measure by assigning to 
each interval of the form (0, x] the total of the inclusion probability of the set B(x) =  f -1((0, x]).  In 
the case of a finite population, the total is just the sum of the inclusion probabilities of all units in 
B(x), i.e., 

i

i
B(x)u

π
∈
∑ , where iπ  is the inclusion probability for population unit iu .  If the population is 

an infinite continuum, e.g., a linear or 2-dimensional extensive resource, then the total is 

B(x)

(s)d (s)π φ∫ , where (s)π  is the inclusion density and (s)φ  is a measure such that ( )B(x)φ  gives the 

amount (length or area) of the resource in B(x).  In any case, we can define a distribution function 
F(x)  so that F(x) is the total inclusion probability over B(x).  We have then that F(0) = 0 and 
F(1) = M = expected sample size.   
 
A systematic sample with a random start and unit selection interval will, on the average, locate M 
points in the interval (0, M].  Because F is increasing, F-1 maps the selected points onto points in the 
unit interval.  We then use f -1 to map the points in the unit interval back   to the population domain, 
thereby defining the sample. A schematic of the process is given in Figure 2. Because of the 
recursive construction of f, systematic sampling along the randomly ordered spatial address is 
analogous to sampling a random tessellation of 2-dimensional space, and results in a spatially well-
balanced random sample.  The construction of the functions f and F ensures that (1) the sample will 
be well-distributed over the population domain, and (2) will have the desired inclusion probability.  
Details of the sampling method and the construction of f, f -1, F, and F-1   are given in Stevens and 
Olsen (in review, 2002). 
 
3.  Estimation 
The basic theoretical tool for population estimation using complex, variable probability sampling 
designs is the Horvitz-Thompson Theorem (Horvitz and Thompson, 1952), which is stated here in 
its continuous form (Cordy, 1993): 
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(Continuous Horvitz-Thompson Theorem): Let s1, s2, ..., sn be a sample selected from a universe U 
according to a design with inclusion function p(s) and joint inclusion function p(s, t), with p(s) > 0 
almost everywhere on U.  Let R ⊂ U, and let z(s) be a real-valued integrable function defined on R.   
An unbiased estimator of T

R

 z(s) ds = z∫  is given by  

ˆ
n

R i i
T

ii = 1

(  ) z(  )s sI = z
(  )sπ∑ ,  

 
with variance (Horvitz and Thompson, 1952) 

ˆ
2

THT

R R R

(s, t) (s) (t)(s)z( ) = ds +    z(s) z(t)dt dsV z
(s) (s) (t)

π π π
π π π

 −
 
 

∫ ∫∫ , 

or, equivalently (Yates and Grundy, 1953), 

 [ ]ˆ
 2

R R
TYG

U U

1 z(s) (s) z(t) (t)I I( ) =  (s) (t) (s, t)    dt d sV z
2 (s) (t)

π π π
π π

 
− − 

 
∫∫ . 

Corresponding estimators of variance are 

 ˆ ˆ
ji i

2
i j i ji

T i jHT 2
  Ri i j i js  R   Rs s
j i

( , )  ( ) ( )( ) s s s ssz( ) =  +     z( ) z( )s szV ( ) ( , ) ( ) ( )s s s s s

π π π
π π ππ ∈∈ ∈

≠

 −
 
 

∑ ∑ ∑   

 and 

  ˆ ˆ

 2
n n

Ri j i j j jRi i
TYG

i j i ji=1 j>i

( ) ( )  ( , ) z( ) ( )z( ) ( )s s s s s sIs sI( ) =     zV ( , ) ( ) ( )s s s s

π π π
π π π

   −
−   

   
∑∑ .  

 Both variance estimators are unbiased, provided p(s, t) > 0 almost everywhere in U.  
 
The spatially-balanced designs obtained by the composition of random grid placement, hierarchical 
randomization of a quadrant-recursive address, and systematic sampling have spatial distribution 
properties that are very similar to a simple RTS design at the same spatial resolution.  This has been 
established by extensive simulation with a variety of populations.   
 
 
Let C be a polygon congruent to the tessellation cells, let C(0) be the cell enclosing the (non-random) 
origin, and C(s) be C(0) translated to the point s, that is, { }C(s) = t | t - s  C(0)∈ .  Following Stevens 
(1997), the inclusion functions for the RTS design are  
 

 
1 1

(s) =  = 
|C(s)| | C |

π  

 and  

 
|C(s) C(t)|

(s, t) = (s) (t) 1 - 
| C |

π π π
 ∩
 
 

,  
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where |C| denotes the area of C.  The GRTS design has joint inclusion functions that are non-zero 
almost everywhere, and we have accurate, easily-computable approximations for them, so that, in 
theory, the Horvitz-Thompson (HT) and Yates-Grundy (YG) estimators are applicable for variance 
estimation.  However, in practice, the case is not so straightforward. The HT variance estimator has 
an unfortunate tendency to yield negative estimates.  The YG estimator is guaranteed to be positive 
for the GRTS design, but tends to be unstable.  The difficulty stems from the fact that the joint 
inclusion density appears in the denominator of the estimators.   Like the RTS design, the GRTS 
design guarantees that p(s, t) > 0 for s ≠ t, but p(s, t) → 0 as s → t.  Our experience has shown that 
most applications of the GRTS design with a modest number (30+) of sample points result in one or 
more point pairs with small values of p(s, t).  The corresponding terms in the variance estimators 
tend to be large in absolute value and to dominate the value of the estimators, leading to their 
unstable behavior. This seems to be a problem especially for variable probability samples where the 
inclusion density is discontinuous, since then the values of z(⋅)/p(⋅) can be substantially different 
even for nearby points.  Since many of the designs we envision will have discontinuous inclusion 
densities (e.g., at regional boundaries, or stream confluences), the HT and YG variance estimators 
are unsuitable. 
 
A stable variance estimator can be obtained by treating the sample as if it arose from independent 
random sampling (IRS), where the n points are selected independently from an arbitrary density f(s) 
over U.  This results in an estimator analogous to the “simplified” estimator given by Särndal, 
Swensen, and Wretman (1992), pp 421-423, or the pps-wr estimator v10 given by Wolter (1985), 
p.287.  For an IRS design, the inclusion density is p(s) = nf(s), and the pairwise inclusion density is 
pIRS(s, t) = n(n-1)f(s)f(t) = (n-1) p(s)p(t)/n.  We know the true inclusion density for our design, and 
we obtain an approximate variance by replacing the true pairwise inclusion density with the IRS 
expression.  When we do that, the HT variance estimator for ˆ TZ  reduces to 

2
1 ( )ˆ ˆ

1 ( )1 i j ii

 2
ji i i

SRSTIRS
 ,  R s Ri i js s R is
i  j

z( ) z sz( ) z( ) n zss s( ) =   = (z/ )nVV Z ( ) ( ) ( ) n ss s sn
π

π π π π π∈ ∈∈
≠

      − =       −         −
− ∑∑ ∑  

where VSRS(z/p) is the usual estimator of the population variance for a simple random sample ( SRS) 
design applied to z(si)/p(si) . 
 
The IRS estimator accounts for the non-constant inclusion density, but does not account for the 
spatially constrained nature of the GRTS design.  If the response has some spatial pattern, at least to 
the extent that the responses for two points close together tend to be more similar than the responses 
at two points far apart, then the GRTS design will lead to more precise estimates than independent 
random sampling with the same inclusion function.  Thus, the IRS estimator will be conservative, 
i.e., it will tend to overstate the variance.  
 
Several authors (Yates, 1949; Wolter, 1985; Overton and Stehman, 1993) have considered a class of 
estimators based on contrasts. The general form of these estimators is  

2ˆ ˆ( )Ctr T i i
i

V Z w y= ∑ , 
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where yi is a contrast of the form ( )i ik k
k

y c z s= ∑ with 0ik
k

c =∑ .  For an RTS design, Overton and 

Stehman also considered a “smoothed” contrast-based estimator of the form  
* 2ˆ ˆ( ) ( )SMO T i i i

i

V Z w z z= −∑ , 

where *
iz , called the “smoothed value” for data point zi, is taken as a weighted mean of a point 

plus its nearest neighbors in the tessellation.  Thus, for points near the edges of the population, 
fewer neighbors are used in calculating *

iz . 
 
The variance estimator we are proposing here is a contrast-based estimator that bears some 
resemblance to the Overton and Stehman smoothed estimator.  We replace the single contrast 

* 2( )i iz z−  with an average of several contrasts over data from a local neighborhood that is the 
construct in the GRTS design analogous to a tessellation cell and its nearest neighbors in the RTS 
design.  Some of the justification for this approach is the observation that the selection from unit 
intervals on the line corresponds to selection from a random tessellation of the population domain, 
i.e., a random stratification.  If we let B%  denote the random event that determines the stratification, 
then the GRTS design, conditional on B% , is a 1-sample-per-stratum spatially-stratified sample.  

Recall that ˆ
i

i
T

i  Rs

z(  )s = Z (  )sπ∈
∑ , where z(si) is a sample from the ith random stratum. Since the selections 

within strata are conditionally independent of one another, ˆ TTE [  | B] =  ZZ %  so that 

ˆ ˆ ˆ ˆ
i

i
T T T T

iRs

z( )sV( ) = E [V(  | B)] + V(E [  | B]) = E [V(  | B)] = E V  | BZ Z Z Z ( )sπ∈

  
  

  
∑% % % % .  We form the 

neighborhood variance estimator by approximating i

i

z( )sE V  | B
( )sπ

  
  

  
%  by averaging several contrasts 

over a local neighborhood D(si). 
 
The choice of a neighborhood is motivated by the following considerations.  For a GRTS design, the 
joint inclusion function p(s, t) is well-approximated by a function of the form 

{ }(s, t) = (s) (t) 1- h(s, t)π π π where h(s, t) has the properties: h(s, t) = h(t, s), h(s, s)=1, 
0  h(s, t)  1≤ ≤ , h(s, s+ s)  0→V as | |sV  increases, and h(s, s+ s) = 0V for | |sV  greater than some constant. 
Stevens (1997) has shown this analytically for several variations on the basic RTS design, and we 
have investigated more complex applications via simulation.  For s ∈ R, let D(s) be the 
neighborhood of s where h(s, t) is positive, i.e., let D(s) = {t R | h(s, t) > 0}∈ .  For t outside of D(s), the 
pairwise inclusion density factors:  p(s, t) = p(s)p(t), an independence-like condition, so that D(s) can 
be thought of as a neighborhood of influence for a sample point at s.  It follows that 

(s, t) - (s) (t) = 0, t D(s)π π π ∉ .  Applying this relation in the YG variance gives 

[ ]
2

( )

1 ( ) ( ) ( ) ( )ˆ( ) ( ) ( ) ( , )
2 ( ) ( )

R R
YG T

U D s

z s I s z t I t
V Z s t s t dtds

s t
π π π

π π
 

= − − 
 

∫ ∫ , that is, only point pairs (s, t), with 
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t ∈ D(s), contribute to the variance.  Thus, neighborhoods corresponding to the D(s) are a natural 
choice on which to base a local estimate of variance. 
 
In an equi-probable RTS design, the neighborhoods D(s) are easy to determine.  If the RTS is based 
on a tessellation with cells congruent to a polygon C, then D(s) is a polygon similar to C but with 4 
times the area.  Moreover, in this case, the expected number of sample points falling in D(s) is 4.  
For the GRTS design, the case is not so straightforward.  For example, a non-constant inclusion 
probability density distorts the shape of the D(s).  Even so, the expected number of samples falling in 
D(s) is still 4.  We use this characteristic to define the local neighborhoods used in the estimator. 
 
 
The neighborhoods D(si) are developed by initially including the point si itself plus the next 3  
nearest neighbors for each point.  Thus, the minimum number of points in any D(si) is 4. Including 
more points tends to increase the local variance, since the variance is integrated over a larger portion 
of the population.  Including fewer points tends to increase the variability of the local estimate.   The 
neighborhoods are then adjusted by adding to D(si) any points sj such that i j  D( )s s∈ . This ensures 
that j i i j  D( )    D( )s s s s∈ ⇔ ∈ , reflecting the requirement that h(s, t) = h(t, s).  The neighborhood total 

is calculated as 
( )

( )
( )

( )
j i

j
D i ij

s D s j

z s
z s w

sπ∈

= ∑ . The weights wij are selected using the following criteria: 

 
 

1.  The weight wij should vary inversely as p(sj) and decrease as the distance between si and sj 
increases. 

 
2. 1ij ij

i j

w w= =∑ ∑ , so that the neighborhood totals are averages over the neighborhoods, 

and the sum of the neighborhood totals is equal to the estimated overall total.  
 
The weights are developed by first assigning a value that decreases as the rank of the distance 
between sj and si among the points in D(si) increases and is inversely proportional to p(sj).  The 
formula for this first step is  
 

j i

j

rank( ) -1) /count( ( ))s s
( )s

*
i j

1 - ( D
 =w

π
 

For example, if D(s1) contained 5 points, the points would be ranked 1 through 5 in order of their 
distance from s1.  Of course, s1 receives rank 1, since it is the closest point to itself.  The other 4 
points would be ranked in terms of increasing distance from s1.  If all of the points have the same 

inclusion density, say j(  )  ,sπ π≡ then the point with rank 4 would get weight 
(1 - (4 - 1)/5) 2/5

 = 
π π

. 
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The weights are normalized to satisfy each column total constraint by setting 

k i

*
i j

i j *
i k

  D( )s s

w = w
w

∈
∑

% . There 

is no unique way to satisfy both constraints in criterion (2), so we select the set of weights wij that 
minimize 2

i j i j
i, j

(  -  )w w∑ %  while satisfying criteria (2).  We solve this constrained minimization 

problem using Lagrange multipliers.  The unconstrained minimization is then  
 

2

, ,
min ( ) ( 1) ( 1)
ij k l

ij ij k kj l ilw
k j l i

w w w w
λ γ

λ γ− + − + −∑ ∑ ∑ ∑ ∑%  

 
The wij are easily eliminated from the set of linear equations obtained by setting derivatives to 0.  
The resulting set of equations in ?k and ?l are singular, and we use the Moore-Penrose generalized 
inverse (Rao and Mitra, 1971) to solve for ˆ kλ  and ˆ lγ .  The minimizing set of weights is 

ˆ ˆ ji*
i j i j

 + 
 =  + .w w

2

γλ  

  
 
The neighborhood-based variance estimator is then 

 
2 2
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We note that, by the using the symmetry of h(s, t), the estimator can be re-written as  
2
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z s
V Z w z
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Because of the constraint 1ij
i

w =∑ , the term 
2
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( )
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j
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s D s j

z s
w z

sπ∈

 
−  

 
∑ can be regarded as the 

average of several estimates of variance, each taking the mean over a somewhat different region 
corresponding to a different random tessellation.  Thus, we interpret the term 

2
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i j

j
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s D s j

z s
w z
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 
−  
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z( )sE V  | B
( )sπ

  
  
   

%  

 
The use of a local neighborhood and decreasing weights as a function of distance from a point is 
similar to approaches used in geostatistics (Cressie 1991).  In kriging, variance estimates at a point 
are based on the variogram, which is a function of the distance between points, and is usually 
estimated from the data.  The estimation process is developed assuming a stochastic process for the 
generation of the data.  It is natural to use properties of that stochastic process to develop the 
variance estimator.  In our case, the local neighborhood variance estimation process is developed to 
incorporate properties of the survey design. 
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4.  Simulation Study 
We have verified the performance of the estimator on a variety of real and constructed populations.  
Here we show results for a finite, a linear, and an extensive population.  The finite and extensive 
populations are artificial; they were constructed to have features that seemed to cause the HR and 
YG variance estimators to be particularly unstable.  The linear population consists of real stream 
traces from the upper portion of a watershed.  The designs in each case incorporate variable 
probability. 
 
For the three population types, we assigned population response values by picking (x, y) coordinates, 
and associating a z value by interpolating on a surface. This procedure ensured some degree of 
spatial association in the responses.  We used two different surfaces (a “smooth” and a “rough” 
surface), shown in Figure 3, to define the response values.  The surfaces themselves were defined by 
specifying values at a 101x101 matrix of xy-coordinates, and using the interpolation algorithm to 
specify the response at arbitrary coordinates. 
 
Finite Population Simulation Results 
We generated a finite population consisting of 1000 units.  The locations of the units were picked to 
achieve a population with wide variation in spatial density; to have voids; and to have areas of 
densely packed population elements.  Figure 4 shows the spatial pattern of the finite population used 
in the simulations.  Variable probability was introduced by assigning, at random, 750 units a relative 
weight of 1, 200 units a weight of 2, and 50 units a weight of 4.   
 
We selected 1000 samples of size 50 from the population using the GRTS design.  For each sample, 
we calculated the estimate of ZT, and the IRS and NBH estimators of variance.  We estimated the 
true variance by the variance of the 1000 estimates of ZT.  We calculated confidence interval 
coverage using normal theory confidence intervals, and the known total of the response. 
 
Figure 5 shows a histogram of the 1000 estimates of the NBH variance of ZT using response surface 
1, the smoother surface. A vertical bar is drawn at the location of the true variance.  Confidence 
interval coverages are also displayed in the figure.  The estimator is approximately centered on the 
true value, although it appears to be biased slightly high.  The confidence interval coverages are also 
slightly high, but close to nominal.  Since the variance holds little intrinsic interest, other than as a 
means to calculate confidence, the agreement of the coverage with the nominal is important.  Figure 
6 shows the same 1000 samples as in Figure 5, but with response values from Surface 2.  The results 
are very similar to the first case, with the roughness of the surface reflected in higher variance 
estimates.  The results for both surfaces are summarized in Table 1.  Note that the estimator based on 
the IRS approximation is too large by a factor of about 2; furthermore, it is also more variable than 
the neighborhood-based estimator. 
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Table 1: Summary statistics for 1000 samples from a finite population.  V1000 is the variance of the 
1000 estimates of the total; ˆ NBHV  and ˆ IRSV  are the mean of the neighborhood- and IRS-based 
estimators, respectively.  The columns headed “SD” are the standard deviations of the variance 
estimators. 
 
Linear Population Simulation Results 
We used the stream traces from a real stream network to test the estimator on a linear population.  
We assigned weights by Strahler order, using a weight function equal to the stream order.  This 
weighting scheme is similar to one often used by the U.S. Environmental Protection Agency’s 
Environmental Monitoring and Assessment Program (EMAP).  Stream networks tend to have much 
of their total length in smaller, lower-order reaches, e.g., in the headwater reaches.  Placing greater 
weight on the higher-order reaches puts more sample points in the streams that are more likely to 
contain fish.  The test population is shown in Figure 6. The results, shown in Figure 7, are very 
similar to the results to the finite population cases: the estimator was approximately unbiased, and 
confidence interval coverage was near nominal. 
 
Extensive Population Simulation Results 
The final test population was an artificial extensive population, which consisted of an irregular 
region split into two unequal-sized subregions.  In this case, variable probability was introduced by 
specifying the sample sizes required in each region, with the larger sample specified for the smaller 
region.  This implicitly defines the inclusion density function, constant over subregion, with the 
relative intensity of Region 2 to Region 1 equal to 2.66.  The test population is displayed in Figure 8, 
with a histogram of the results for Surface 1 in Figure 9.  The results for Surface 2 were quite 
similar.   
 
The behavior of the NBH estimator is compared to the IRS estimator in Figure 10, where the 
histograms of each estimator are shown, drawn to the same scale.   As for the finite population case, 
the IRS estimator is biased high, by a factor of about 2.  Also, the NBH estimator is more stable than 
the IRS estimator, consistent with the finite population results 
 
5.  Example Application:  Sampling the Oahe Reservoir on the Missouri River 
The USEPA is completing a research study to develop ecological indicators for large rivers and 
associated reservoirs.  As part of this study, we developed a generalized MD-NRTS survey design 
for the Oahe Reservoir on the Missouri River.  The Oahe reservoir is 1,287.5 km2 in area and 
approximately 325 km in length extending from North Dakota to South Dakota.  An extensive frame 
development effort was used to delineate the reservoir boundaries.  The National Elevation Database 
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(NED) was used to create reservoir polygons. Polygons were edited and attributed using available 
navigation charts, topographic maps, and local knowledge. Insufficient bathymetry data were 
available to create an explicit depth criteria but a variety of sources were used to eliminate upland 
extents of some bays to avoid probable dry, inaccessible or otherwise non-target areas. The shoreline 
is defined as the 510 m MSL contour 20 m above the normal pool elevation (490 m).   The many 
bays on the reservoir were of particular interest, so they were individually delineated and categorized 
as small (0.5 to 1.45 km2), medium (1.45 to 3.32 km2), and large (3.32 to 8.0 km2) bays.  The 
remainder of the reservoir was designated as open water.  The desired number of samples was 12 in 
each bay category and 15 in open water, for a total sample size of 51.  The areas were 22.17 km2, 
50.56 km2, 289.49 km2, and 925.27 km2 for small, medium, large, and open water, respectively.   
 
We defined a generalized MD-NRTS survey design with four multi-density categories based on bays 
and open water.  In addition to the desired sample size of 51 sites, an over sample of another 51 sites 
were included for a total sample size of 102.  After applying reverse hierarchical ordering, the base 
sample of 51 sites was taken from every other sample point on the ordered line, with the over sample 
being the remaining 51 sites.  Initial weights (inverse of the inclusion probability) were 1.85, 4.24, 
23.81, and 61.90 km2 for small, medium, large, and open water, respectively.  While conducting 
fieldwork, four sites were found not to be in the reservoir target population due to frame 
inadequacies.  The sites were replaced by the first four sites on the over sample list, for a total of 55 
sites included in the final sample of 4 non-target, 34 bay and 17 open water sites.  We adjusted the 
weights to account for the use of the four over sample sites.  Simple ratios of frame area to sum of 
weights within open water and all bays were applied to the initial weights.  As expected, all non-
target sites were located in bays leading to the use of these two ratios. 
 
Three variables measured at each location were chlorophyll-a, water temperature at 2m, and secchi 
depth (a water transparency measure).  Table 2 gives the estimated population means, IRS Horvitz-
Thompson variance estimates, and local variance estimates.  The local variance estimate ranges from 
–22.5% to 58.1% reduction compared to the IRS variance estimate.  Figure 11 displays the 
geographic spatial pattern for the observed data.  In each case definite spatial patterns exist in the 
data.  The local variance estimator takes advantage of the pattern, resulting in significantly lower 
variance estimates.   
 
 Estimated 

Mean 
ˆ IRSV  ˆ NBHV  Percent 

Reduction 
Chlorophyll-a (µg/l) 2.83 0.192 0.081 -58.1 
Temperature (°C) 23.37 0.077 0.035 -55.0 
Secchi depth (m) 2.61 0.121 0.073 -22.5 
Table 2.  Lake Oahe population Estimates from GRTS design. ˆ NBHV  and ˆ IRSV  are the mean of the 
neighborhood- and IRS-based estimators, respectively.  Percent reduction is compared to IRS-based 
variance estimate.  
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6.  Discussion 
The neighborhood-based variance estimator performed quite well on all the test cases simulated.  
The estimator is approximately unbiased, and most importantly, the confidence interval coverage is 
very close to nominal.  The distribution of the estimator tends to be somewhat skewed to the right, as 
is to be expected for a variance estimator, but does appear to be stable.  
 
Although we have not explored the possibility, we expect that the estimator would also work very 
well for a randomly placed systematic design, or, indeed, for any design with an element of spatial 
balance, e.g., Breidt’s (1995) Markov-chain design..  The estimator draws on the smoothness of the 
local response surface; if the response has no spatial structure, then each local estimate of the total 
estimates the overall total, and thus, each local variance estimates the overall variance.  Because of 
the constraints on the weighting function, the NBH variance estimator can be viewed as an average 
of several estimates of the same quantity.  If, however, the local smoothness varies, then this will be 
reflected in higher variance estimates. 
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Figure 3.  Surfaces used to assign population values. 
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Figure 4.  Locations of finite population used in simulation.  Weight 1 units are represented by ∆, 
weight 2 units by ¨, and weight 4 units by X. 
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Figure 5.  Histogram showing results of 1000 GRTS samples of size 50 from finite population using 
Surface 1. 
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 Figure 5.  Histogram showing results of 1000 GRTS samples of size 50 from finite 
population using Surface 2. 
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.Figure 6.  Linear network used in simulation study.   
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Figure 7.  Histogram of estimated variance for 1000 GRTS samples of size 50 from a linear 
population.   
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Figure 8.  Two subregions of extensive population used in simulation study, showing their areas and 
sample sizes. 
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Figure 9.  Histogram showing results of 1000 GRTS samples of size 50 from extensive  population 
using Surface 1. 
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Figure 10.  Comparison of Neighborhood and IRS variance estimators.  The histogram for the 
Neighborhood estimator is the same as Figure 8, scaled to match the IRS histogram.
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Figure 11.  Spatial geographic pattern of relative magnitudes for chlorophyll, temperature, and secchi 
depth in Oahe Reservoir. 


